
Osmotic Capsules for Preclinical Assessment of Extended Release Drug Delivery Feasibility

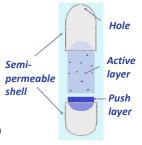
Jennifer Chu, Sammy Bell & Kenneth C. Waterman

OzmoCAP®, a division of FreeThink Technologies, Inc.

Introduction

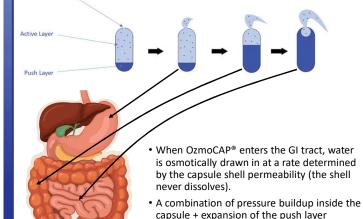
- Oral extended release (ER) delivery of drugs can provide multiple advantages over oral immediate release delivery.
 - Patient compliance: An effective ER dosage form can improve patient compliance by reducing how frequently patients are dosed
 - Safety: An effective ER dosage form can decrease peak blood levels (C_{max}) of drug, reducing the potential for adverse events
 - Drug efficacy: An effective ER dosage form can increase minimum blood levels (C_{min}), which may provide greater efficacy

- A drug's suitability and optimal ER profile depend on many factors.
 - o Gastrointestinal (GI) regional absorption is affected by:
 - pH (ranges from <2 to >7.5 through the GI tract)
 - Water content (lowest in the large intestine)
 - Intestinal permeability (highest in the upper small intestine)
 - Shear forces (greatest in stomach)
 - First pass metabolism (can impact bioavailability when ER slows drug absorption)
 - Efflux (absorbed drug is pumped back into GI tract and excreted, which depends on interactions between drug and efflux transporter)
- Optimizing ER oral drug delivery rates in vivo is valuable


Osmotic Drug Delivery

 Osmotic ER delivery is not enteric—release rate and release duration are independent of:

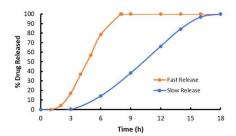
o drug properties


Hole in capsule shell

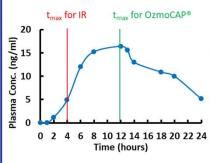
- 。environmental pH
- o dosage form position in GI tract
- Osmotic delivery has better in vitro-in vivo correlation (IVIVC) than other oral ER dosage forms such as matrix tablets and coated beads.
- While osmotic tablet preparation requires a complex manufacturing processes and long development timelines, OzmoCAP® can be developed and manufactured rapidly.

OzmoCAP® internal view

OzmoCAP® Mechanism


delivers the drug as a viscous

capsule shell.


solution/suspension out of the hole in the

OzmoCAP® Dissolution Profiles

- Various release durations possible:
 - ∘ Fast: 80% drug released ~6 h
 - _o Medium: 80% drug released ~10 h
 - ∘ Slow: 80% drug released ~14 h
- Drug release is independent of:
 - 。 media pH
 - 。stir rate

Case Study

- Compound X is already an oral immediate release tablet for twice-daily dosing.
- Once-daily product is desired to reduce dosing frequency and decrease C_{max}-related side effects.
- It is important to understand Compound X absorption throughout the GI tract to determine the feasibility of developing an oral ER dosage form.
- Fast + slow release OzmoCAP® developed and dosed into fed dogs
 - $_{\circ}$ Immediate release dosage form has 4 h t_{max}
 - $_{\circ}$ Fast release OzmoCAP® extended absorption + shifted t_{max} to 10–12 h
 - Slow release OzmoCAP® shows very low blood levels (data not shown)
- Absorption in small but not large intestine led to progressing an ER dosage form with release duration corresponding to upper GI absorption.

Conclusion

- Oral ER dosage forms can be beneficial drug product enhancements.
- Determining an optimum release profile is often a critical step in ER dosage form development yet can be convoluted by dosage form performance.
- OzmoCAP® enables rapid development and in vivo dosing for quick assessment of an optimal ER drug delivery profile.

Acknowledgments

- The authors would like to acknowledge Boehringer Ingelheim for its support of this project.
- The authors would also like to acknowledge the following for their assistance with the development efforts:
 - o Jessica Kelly
- Michael McDermott

。Lili Chen

- Zachary Soffer
- $_{\circ}$ Edward Harrington

Contact

jennifer.chu@freethinktech.com | david.lucey@freethinktech.com

